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Abstract

Recent genome wide association studies (GWAS) of Hodgkin lymphoma (HL) have identified 

associations with genetic variation at both HLA and non-HLA loci; however, much of heritable 

HL susceptibility remains unexplained. Here we perform a meta-analysis of three HL GWAS 

totaling 1,816 cases and 7,877 controls followed by replication in an independent set of 1,281 

cases and 3,218 controls to find novel risk loci. We identify a novel variant at 19p13.3 associated 

with HL (rs1860661; odds ratio [OR] = 0.81, 95% confidence interval [95% CI] = 0.76–0.86, 

Pcombined = 3.5 × 10−10), located in intron 2 of TCF3 (also known as E2A), a regulator of B- and 

T-cell lineage commitment known to be involved in HL pathogenesis. This meta-analysis also 

notes associations between previously published loci at 2p16.1, 5q31, 6p31.2, 8q24.21 and 10p14 

and HL subtypes. We conclude that our data suggest a link between the 19p13.3 locus, including 

TCF3, and HL risk

Hodgkin lymphoma (HL) is an etiologically and histologically heterogeneous disease 

characterized by the presence of rare malignant Hodgkin Reed-Sternberg (HRS) cells1. It is 

one of the most common cancers among young adults in Western countries2,3. Classical HL 

(cHL) makes up the vast majority of HL and is itself comprised of several subtypes. Nodular 

sclerosis HL (NSHL) is the most common subtype among adolescents and young adults and 

is typically Epstein-Barr virus (EBV) negative4–6. Mixed cellularity HL (MCHL) is more 

common among young children and older individuals and its tumor cells typically contain 

EBV (EBV-positive HL)4–6. HL has a strong genetic component, with a highly increased 

Please address correspondence to: James McKay, Ph.D., Head, Genetic Cancer Susceptibility Group, IARC/WHO, 150 cours Albert 
Thomas, 69372 Lyon cedex 08, France, Phone: +33 4 72 73 85 58, Fax: +33 4 72 73 83 42, MckayJ@iarc.fr or Wendy Cozen, D. O., 
M.P.H., Professor of Preventive Medicine and Pathology, USC Keck School of Medicine, Norris Comprehensive Cancer Center, 1441 
Eastlake Ave. MC 9175, Los Angeles, CA 90089-9175, Phone:1-323-865-0447, Fax:1-323-865-0141, wcozen@med.usc.edu or Anke 
van den Berg, Ph.D., Professor, Department of Pathology & Medical Biology, University Medical Center Groningen, University of 
Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB Groningen, The Netherlands, Phone: +31-50-3611476, Fax: +31-50-3619107, 
a.van.den.berg01@umcg.nl.
35These authors contributed equally to the work.

AUTHOR CONTRIBUTIONS
WC, ML, DC, GC, ML, PB, KO, RFJ, HH, AV and JDM designed the study. MT, DL, DH, KAR, MDS, CKE, YB, CE, VG, GB and 
JDM performed the statistical analysis. WC, KR, DJV, LF, KS, SLG, H-J W, LLR, TMM, HG, AEG, AN, SS, VKC, TL, NB, LF, ER, 
MM, BNN, BG, AS, PB, BKL, LK, SMA, SB, LCS, TMH, PG, LV, EJD, AL, RNV, LV, YL, KYU, DM, LMW, ML, H-OA, MM, 
JRC, AG, MGT, SLS, PB, TB, AS, DVC, GAC, KO, RFJ, HH, AV, JDM provided samples and data. WC, AD, KO, RFJ, HH, AV 
and JDM drafted the manuscript. All authors contributed to the final paper.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

EXOME SEQUENCING DATA
Exome sequence data for the TCF3 gene in 7 Hodgkin lymphoma cell lines has been deposited in the EMBL European Bioinformatics 
Institute database under the accession code PRJEB5699 (or ERP005119).

HHS Public Access
Author manuscript
Nat Commun. Author manuscript; available in PMC 2014 December 12.

Published in final edited form as:
Nat Commun. ; 5: 3856. doi:10.1038/ncomms4856.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk in monozygotic compared to dizygotic co-twins7 and other siblings8 of a case, that risk 

in turn being several times higher than risk to an average person.

It has been demonstrated that HLA is strongly associated with risk of HL and that associated 

loci vary by EBV tumor status, with EBV-positive cHL associated with HLA-A*01 and 

HLA-A*02 class I alleles, and EBV-negative cHL associated with markers in or near the 

HLA-class II region6,9,10. Three independent HL GWAS in persons of European-origin have 

recently been published; two included all patients with cHL11,12 and one was limited to 

adolescent/young adult patients with NSHL13. The most significantly associated SNPs in all 

three GWAS were located at the 6p21.32 region, which contains the HLA genes. Multiple 

independent variants within this region were associated with HL, with heterogeneity based 

on EBV tumor status and histological subtype11–13. Non-HLA risk loci were also identified, 

including REL, GATA3 and IL13, some of which showed heterogeneity by histological 

subtype or EBV subgroup11,12. These studies collectively do not explain all genetic 

susceptibility for HL.

Here we perform a meta-analysis to identify additional variants associated with HL and to 

investigate shared and unique susceptibility loci for different HL histological subtypes and 

EBV-status stratified subgroups. This study is the largest to date for this disease, with 3,097 

cases and 11,095 controls included in the combined discovery and replication sets. We note 

HL subtype-specific associations with previously reported SNPs and identify a new HL 

susceptibility locus at 19p13.3.

Results

The GWAS discovery set included 1,816 cases and 7,877 controls from three centers: 

University of Southern California [USC]13; International Agency for Research on Cancer 

[IARC]12; and University of Chicago [UC]14 (Fig. 1, Supplementary Fig. 1, Supplementary 

Table 1). Of the 1,816 cases, 58% were diagnosed between the ages of 15 and 35, 55.5% 

were female and 68% had HL tumors classified as NSHL. EBV tumor status was available 

for 1,063 cases; of these 27% were EBV-positive. 50% of the EBV-positive cases were 

MCHL. Conversely, 57% and 20% of MCHL and NSHL, respectively, were EBV-positive, 

roughly similar to the distribution observed in a California population.5 Adolescents and 

young adults aged 15–35 diagnosed with NSHL had the lowest proportion of EBV-positive 

tumors (17%), as expected.

For the meta-analysis, we first applied quality control methods and imputation, which 

resulted in a total of 1,004,829 SNPs that were in common between the three studies (Fig. 1, 

Supplementary Fig. 215). When considering the global GWAS results, there was some 

evidence of a general inflation of the test statistic (λ = 1.10, and excluding the MHC region, 

λ= 1.09). However, after normalizing for sample size16, the degree of inflation was modest 

(λ1000 = 1.03). The discovery meta-analyses of HL and subtypes were based on the 1,816 

overall HL, 1,233 NSHL, 792 NSHL cases diagnosed between 15–35 years old, and 331 

NSHL cases diagnosed older than age 35 (IARC GWAS only), each compared to the same 

7,877 controls. Analyses stratified on EBV tumor status were based on 287 EBV-positive 

HL and 776 EBV-negative HL compared to 6,863 controls from the subset of studies with 
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EBV testing (Supplementary Table 1). The individual study results were combined using an 

inverse-variance weighted meta-analysis under the fixed effects model used to generate all 

p-values reported below for GWAS associations.

The meta-analysis revealed HL subtype-specific associations with genotypic variants at 

2p16 (REL), 5q31 (IL13), 6p21 (HLA), 8q24 and 10p14 (GATA3) and the two recently 

described loci at 3p24 (EOMES) and 6q23 (HBS1L-MYB), consistent with previous 

reports11–13,17 (Fig. 2, Fig. 3, Supplementary Table 215, Supplementary Fig. 3). As 

expected, the SNPs near genes coding HLA class I alleles were strongly associated with 

EBV-positive HL and MCHL, but not EBV-negative HL or NSHL, while associations with 

SNPs near or in genes coding HLA class II alleles showed the opposite pattern (Fig 2). We 

identified two SNPs within the regions of 2p16 (REL) and 10p14 (GATA3), rs13034020 

(P=3.2 × 10−6) and rs444929 (P=3.1× 10−6), that in our analysis were more significantly 

associated with HL than the previously reported SNPs rs1432295 and rs48541111 in these 

respective regions (Supplementary Fig. 3). When conditioned on the previously reported 

SNPs, the association between HL and rs13034020 (P=1.2 × 10−3) and rs444929 (P= 1.8 × 

10−3) remained significant (Supplementary Table 3). These SNPs, in addition to rs20541 in 

the IL13 gene region, were more strongly and significantly associated with EBV-negative 

HL and NSHL compared to EBV-positive and MCHL (Fig. 2, Supplementary Table 2). 

There was little difference in association by subtype/subgroup for the loci in the 3p24 and 

6q23 regions (Fig. 2).

We found a novel susceptibility variant (rs1860661) surpassing the threshold for genome-

wide significance located at chromosome 19p13.3 within intron 2 of the TCF3 gene (Odds 

Ratio [OR] = 0.78, P = 2.0 × 10−8, I2 = 0%) (Fig. 3, Table 1). This variant was also 

significantly associated with all HL (OR = 0.85, P = 0.0024) in the replication series of 

1,281 all HL cases and 3,218 controls of European descent (Table 1, Fig. 4). In the 

combined analysis, rs1860661 was strongly associated with all HL (OR = 0.81, P = 3.5 × 

10−10), with no evidence of statistically significant heterogeneity between contributing 

studies (Phom = 0.41, Cochran’s Q statistic, I2 = 0%). Inconsistent associations by histologic 

subtype (MCHL) and EBV status (EBV-positive HL) between the discovery and replication 

sets were likely to be chance findings due to small numbers (Table 1).

For all HL combined, two other novel variants at chromosome 3q32 (CLSTN2, rs6439924, P 

= 8.3 × 10−8, I2 = 0%) and chromosome 7p21 (ARL4A-ETV1, rs2058613, P = 6.6 × 10−7, I2 

= 0%) approached genome-wide levels of significance in the discovery set, but were not 

significant in the replication set (Supplementary Table 4).

We used a bioinformatic approach (FunciSNP18) to identify potential functional variants 

tagged by rs1860661. By querying the the 20110521 release of 1000 genomes database19, 

we identified four SNPs correlated (r2 > 0.5) with the index SNP (rs1860661). We then 

extracted publically available ENCODE20 data on biofeatures, and found that the index SNP 

rs1860661 and two correlated SNPs, rs10413888 (r2 = 0.90) and rs8103453 (r2 = 0.89), map 

in or near marks of open chromatin and in DNAse hypersensitivity sites in TCF3 in CD20+ 

B cell lines. Interestingly, the protective haplotype defined by the minor alleles G-G-G of all 

three SNPs potentially enhances the efficiency of the binding sites for transcription factors 
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ZBTB7a and E2F1 (Fig. 5). The relative frequencies of each nucleotide (based on a position 

weight matrix) for the alleles in the ZBTB7A motif of index SNP r1860661 are G:99.8% A:

0.2% and for rs10413888 (r2=0.90) are T:0.4% G:97.4%. For rs8103453 (r2=0.89) the E2F1 

nucleotide frequencies are A:0% G:97%.

To investigate function of rs1860661, we measured the expression levels of TCF3, and its 

two alternative transcripts E12 and E47 in lymphoblastoid cell lines (LCLs) derived from 

circulating normal B-cells from 49 post-therapy HL patients and 25 unaffected controls 

using linear models to assess correlation between genotype and TCF3 expression levels (Fig. 

5). There was little evidence for correlation with TCF3 expression levels in this small 

sample, with only a weak association observed in LCLs from controls with the TCF3 -E47 

isoform (P=0.02), whose transcription start site is located close to rs1860661 (Fig. 5). 

Similarly there was little evidence in public data bases21 that rs1860661 acts as a TCF3 

eQTL, although eQTLs for the two isoforms were not available. Evidence for 

downregulation of both TCF3 isoforms was observed in seven HL-derived cell lines 

compared to germinal center B cells sorted from three different tonsils (Pt-test <0.05) 

(Supplementary Fig. 4). Exome sequencing of the same set of seven HL cell lines identified 

a TCF3 missense mutation, N551K, (Supplementary Fig. 4) which has also been observed in 

Burkitt lymphoma22.

Finally, we selected the subset of 21,608 SNPs included in our GWAS previously identified 

as cis-eQTLs in B-cells alone or both B-cells and monocytes23. Within this subset, the 

genomic inflation factor (λ) was estimated as 1.16 (Supplementary Table 5, Supplementary 

Fig. 5). A λ of 1.16 was not observed within any of 1000 random draws of 21,608 SNPs of 

similar MAF taken from the complete HL meta-analysis, (Supplementary Table 5), 

suggesting a relative over-representation of associated variants within this subgroup.

Discussion

In this meta-analysis of 1,816 HL cases and 7,877 controls, we have identified a new 

susceptibility locus for HL at 19p13.3 in the TCF3 gene and noted associations with 

previously identified loci at 2p16 –REL, 5q31 – IL13, 6p21-p22 – HLA region, 8q24, and 

10p14 – GATA3. TCF3 is essential for the commitment of lymphoid progenitors to both B-

cell and T-cell lineage development24–26. In B-cells, homodimers of the E47 isoform of 

TCF3 lead to transcriptional activation of TCF3 target genes including the B-cell specific 

transcription factors Oct-2, PU.1 and Bob.125. A molecular and phenotypic hallmark of cHL 

is loss of the B-cell signature in HRS cells, including lack of the B-cell receptor, and the 

lineage markers CD19 and CD20. This loss has been attributed to down-regulation of Oct-2, 

PU.1 and Bob.1 as a consequence of decreased formation of TCF3 E47 homodimers due to 

increased expression of ABF-1 and ID2, two proteins that bind to and inhibit TCF326–28. 

However it is also possible that decreased transcription of the TCF3 gene contributes. Renne 

et al26 reported lower average levels of TCF3 expression in cHL-derived cell-lines 

compared to B-cell lines and we observed significantly lower levels of both TCF3 splice 

variants in cHL-derived cell lines compared to sorted tonsillar germinal center B-cells. 

These observations are consistent with the hypothesis that higher TCF3 levels in HRS 

precursor cells may lead to enhanced retention of the B cell phenotype, thereby conferring a 
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protective effect for HL. A biofeature analysis suggests that rs1860661 is located in a 

transcription factor binding site; however, further study is necessary to determine whether 

rs1860661 is a causal SNP and associated with a true biological effect on TCF3 expression. 

Interestingly, in one out of seven HL cell lines, we observed a pN551K missense TCF3 

mutation, a mutation also found in Burkitt lymphoma samples22, suggesting that 

investigation of such mutations in HRS cells may be warranted.

As expected, previously published subtype (histology) and subgroup (tumor EBV status) 

associations with SNPs in 2p16, 5q31, 6p31.2, 8q4, and 10p14 regions were observed11–13, 

though at higher significance levels due to the increased power of the meta-analysis, 

supporting the proposition that cHL is etiologically heterogeneous. There are clear 

associations between HLA class I loci and risk of both EBV-positive HL and MCHL, and 

between HLA class II, IL13, REL and GATA3 loci and risk of both EBV-negative HL and 

NSHL. Our data are inconclusive at this time regarding subset heterogeneity for rs1860661.

Thus, our data suggest a link between the 19p13.3 locus, including TCF3, and HL risk. 

Although we did not demonstrate functionality of rs1860661, it is located in a gene that is 

known to be downregulated in HL and thus merits further study. Because HL is a rare 

cancer, amassing substantial numbers of patients for a GWAS study is difficult. 

Nevertheless, our meta-analysis increased the ability to detect additional loci, to the level of 

an OR of 1.25 for a minor allele frequency of 30% with 80% power, in line with other meta-

GWAS. Even so, we considered the potential for the existence of additional risk HL alleles 

by assessing the evidence for association within genetic variants linked with gene expression 

levels in B cell lymphocytes (eQTLs)23 compared to unselected genetic variants. The 

existence of additional, as yet unidentified risk variants for HL is suggested by the 

observation that eQTLs were enriched among the top associations with HL as compared to 

non-eQTLs (Supplementary Table 5).

Methods

Ethics

All studies were approved by the following human subjects protection committees at the 

respective institutions: the University of Southern California Institutional Review Board, the 

Mayo Clinic Institutional Review Boards, the WHO International Agency for Research on 

Cancer Human Subjects Committee, the University of Chicago Institutional Review Board, 

Ethics Committees of Dijon and Lyon University Hospitals, Medical Ethical Review 

Committee of the UMCG, The Regional Ethical Review Board in Stockholm, the Scientific 

Ethics Committee for the Capital Region of Copenhagen, Research Ethics Committee for 

Wales 08/MRE09/72, West of Scotland Research Ethic Committee REC4 09/S0704/73, 

Multi-Centre Research Ethics Committee for Scotland 06/MRE00/83 and the Northern & 

Yorkshire Regional Ethics Committee. All patients and replication controls signed informed 

consent. De-identified publically available GWAS data were obtained for the control 

comparisons in the three discovery set GWAS.
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Source of Subjects and GWAS Discovery

The discovery meta-analysis was undertaken by 2 centers (IARC and USC) and was based 

on summary data from 3 previously reported GWAS providing genotype data on 1,816 HL 

cases and 7,877 controls of European descent: The European Collaborative GWAS12, and 

the University of Southern California (USC)13/University of Chicago (UC)14 GWAS 

studies, which were combined for a single meta-analysis.

The European Collaborative Study, presented elsewhere12, included 1,241 HL cases aged 

13–80 (median age = 33 years) from five European-based HL studies and 5,726 generic 

controls aged 17–94 (mean age = 62) used in the initial GWAS scan. In addition to the 

classical HL cases described in the initial GWAS, 41 non-cHL cases were also included in 

the total. The distribution of cases among the five European-based HL studies is: the 

EPILYMPH Study (N = 196)29, the Scotland and Newcastle Lymphoma Group and the 

Young Adult Hodgkin’s Disease Case–Control Study (N = 397)30, the Scandinavian 

Lymphoma Etiology Study (SCALE) (N = 344)31,32, and the Northern Dutch Hodgkin 

Lymphoma Study (N = 304)33. The distribution of the controls by study is: Alcohol Related 

Cancers and Genetic Susceptibility in Europe Study (N = 323)34; the International Agency 

for Research on Cancer Central Europe Study (N = 443)35; the Pancreatic Cancer Cohort 

Consortium (N = 321)36; the Nijmegen Biomedical Study (N = 1,769)37 and the Wellcome 

Trust Case–Control Consortium (N = 2870)38. Cases were genotyped at the Centre National 

de Génotypage using the Illumina Infinium Human660-Quad BeadChip (Illumina, Inc. San 

Diego, CA). Multiple sources of generic controls were genotyped on compatible Illumina 

BeadChips platforms.

The USC HL study set included 366 European-origin cases (from an original 380) from four 

sources, (age range 7–58, mean age = 29.5); 233 patients, diagnosed < 45 years of age 

between 2000 and 2008, were ascertained from two California SEER registries13, and 133 

patients, diagnosed between the ages of 7 and 58 from 1975 through 2006, were ascertained 

from two USC twin registries:the population-based California Twin Program and volunteer 

International Twin Study7,39. Of the 366 HL cases, 251 (69%) were diagnosed as nodular 

sclerosis HL; 72 (20%) as mixed cellularity HL; 11 (3%) as other classical HL; 11 (3%) as 

lymphocyte predominant HL; and 21 (5%) as not specified. Of the 129 specimens tested for 

EBV by in situ hybridization40, 107 (83%) were negative and 22 (17%) were positive. 90% 

of the nodular sclerosis HL and 50% of the mixed cellularity tumors were EBV negative. 

Fourteen 13 cases from the original analysis were removed due to additional QC measures. 

Controls were 1,137 (from an original 1,142) European-origin females aged 25–42 who 

were breast cancer controls in the Cancer Genetic Markers and Susceptibility Project 

(CGEMS)41,42. USC cases were genotyped using the Illumina 610 Quad BeadChip and 

controls were genotyped using the Illumina HumanHap550(v.1.1).

The third GWAS was conducted at UC14, in which cases consisted of 209 (from an original 

214) HL patients diagnosed prior to age 21 (mean age = 16) who were participants in the 

Children’s Cancer Survivor Study (CCSS), a retrospective study of 14,358 survivors of 

childhood cancer diagnosed before 21 years of age and surviving at least five years43. Of 

these, 142 (68%) were diagnosed as nodular sclerosis HL and 18 (9%) as mixed cellularity 

HL. Five cases from the original analysis14 were removed due to additional QC measures. 
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Tumor EBV status was not available. Controls were 1,014 (from an original 1,016) cancer-

free individuals of European ancestry (464 males and 550 females) from the Genetic 

Association Informative Network schizophrenia study cohort (phs000021.v1.p1)44. Cases 

were genotyped at UC on the Affymetrix Genome-Wide Human SNP Array 6.0.

Permission was obtained for use of CGEMS and GAIN results from dbGAP 

(dbgap.ncbi.nlm.nih.gov/aa/dbgap)41.

Stringent quality control was performed on the genome-wide genotypes by each of the three 

GWAS centers that conducted a GWAS based on standard procedures12–14. To refine 

associations with previously reported loci and to identify new disease loci, we imputed 

untyped genotypes using IMPUTE215,45 and HapMap Phase III (http://

hapmap.ncbi.nlm.nih.gov) reference genotypes for the USC and UC HL GWAS data and 

minimac15,46 software and 1000 Genome Project data release 2010-08 reference 

genotypes19 for the European Collaborative Study12. Poorly imputed SNPs, defined by an r2 

< 0.30 with MACH146/minimac15 or an information measure Is < 0.30 with IMPUTE233, 

were excluded from the analyses. Each GWAS study used a 10% threshold for missingness.

Technical validation of the three novel SNPs with genome-wide significance was performed 

in the IARC (300 discovery set case samples and 90 HapMap Ceu Samples) and USC 

GWAS (36 discovery case samples) using the same TaqMan probes. Concordance for 

rs1860661, rs6439924 and rs2058613 across GWAS and replication genotyping platforms 

was between 99.6% for the European Collaborative Study and 100% for the USC GWAS.

Replication Series and Genotyping

Novel SNP associations were further validated in an independent replication series 

comprising 1,281 cases and 3,218 control subjects from multiple case-control or case series. 

DNA from the European subjects was genotyped at the Centre National Genotypage (1,047 

HL cases and 2,995 controls from 4 contributing studies, mean age =42). The EPILYMPH 

replication set included 64 cases aged 18–78 at diagnosis and 141 controls aged 18–81 from 

the Czech Republic, France, Germany, Ireland, Italy and Spain29; the French replication 

series included 366 cases aged 15–93 at diagnosis from a prospective biologic study carried 

out by LYSA (Lymphoma Study Association)47 and 1696 French controls genotyped by the 

Centre National Genotypage (CNG Evry France); the UK replication series included 499 

cases aged 15–90 at diagnosis and 520 controls aged 16–87 at participation from the ELCCS 

(York) case-control study48, the Scotland and Newcastle Epidemiological Study of 

Hodgkin’s disease30 and the Young Adult Hodgkin’s Disease Case–Control Study; and the 

Scandinavian Lymphoma Etiology Study (SCALE) replication series included 118 cases 

aged 18–75 and 638 controls aged 19–75 from Sweden and Denmark31,32, not included in 

the discovery GWA. The Mayo Clinic Replication series included 234 cases ages 18–89 at 

diagnosis and 233 internal medicine or family medicine clinic controls seen for routine 

appointments49 (mean age of Mayo Clinic cases and controls = 44 years), genotyped at the 

Molecular Genomics Core of USC. A subset of European controls was also genotyped at the 

Centre National Genotypage using the Illumina Sentrix HumanHap300 BeadChip (French 

controls, n=1,696) or Sequenom (SCALE31 controls, n=638). A TaqMan Pre-Designed SNP 

Genotyping Assay Mix (containing probes and primers) was used for each SNP (Applied 
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Biosystems, Carlsbad, CA, assay-on-demand order code C__32302340_10 for rs6439924 

and C__11969900_10 for rs1860661). No assay could be designed for rs2058613 and 

therefore a proxy variant (R2=1.0, D′=1.0 in CEU) rs6946457 (assay C__2678118_10) was 

genotyped. Similarly, rs1860661 could not be genotyped by Sequenom in the SCALE31 

controls as this assay was not able to be designed for this platform. The performance of the 

assays was validated at the Centre National Genotypage by re-genotyping CEU HapMap 

samples (US residents with northern and western European ancestry) and comparing the 

results to HapMap genotypes (http://hapmap.ncbi.nlm.nih.gov) (IARC) and by re-

genotyping 32 samples from the GWAS and comparing the results to the array based 

genotypes (USC). Within the study samples, duplicate genotyping concordance was greater 

than 99%.

Statistical Analysis

All calculations were performed using PLINK50 (http://pngu.mgh.harvard.edu/~purcell/

plink), SAS version 9.2 (SAS Institute Inc., Cary, NC, USA) and R15.1 (R project). 

LocusZoom51 was used for regional visualization of results. LD statistics were calculated 

based on HapMap3 release 2 using SNAP Proxy Search52. In each of the three discovery 

GWAS analyses, quality control included removal of individuals with cryptic relatedness 

and a genotyping call rate of <0.95. Additionally, SNPs with a call rate of <0.95, a minor 

allele frequency (MAF) of <0.01 in the data, deviation from Hardy-Weinberg equilibrium (P 

< 1 ×10−5), or whose genotypes resulted from artifacts were removed. Associations between 

SNP genotypes and HL risk were evaluated under a log-additive model of inheritance 

adjusting for sex, study center and significant principal components to control for population 

stratification53.

A meta-analysis using a fixed effects model weighted on the inverse of the variance was 

conducted based on GWAS summary statistics for the log-additive model of inheritance54. 

Only variants available in all three GWAS studies, successfully genotyped/imputed, with no 

evidence of ambiguous strand calls between studies, were included. We examined over-

dispersion using P-values from the meta-analysis to generate Quantile-Quantile (Q-Q) plots 

and estimate an inflation factor λ, calculated as a ratio of the median of the observed chi-

square statistics for association from the Wald tests over the median (= 0.455) of the chi-

square distribution with 1 df54 (Supplementary Fig. 1 and 2). The HLA region was excluded 

when calculating the λ to reduce the inflation due to numerous SNPs in LD capturing this 

previously known locus. Associations between the risk alleles and HL and subtypes were 

assessed using logistic regression to estimate ORs and 95% confidence intervals and P-

values within individual studies. Cochran’s Q statistic to test for heterogeneity and the I2 

statistic to quantify the proportion of the total variation due to heterogeneity were calculated. 

Fixed effect values ≥75% are considered the characteristic of large heterogeneity and 

corresponding variants were excluded from the analysis. Replication analyses were 

conducted using logistic regression to estimate OR’s, 95% confidence intervals and P-values 

within individual studies. Study-specific estimates were summarized using a meta-analysis 

procedure as described above.
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FunciSNP Functional Annotation

To integrate chromatin biofeature annotations with 1000 Genomes19 genotyping data, we 

used an in-house developed R package FunciSNP18, available at www.Bioconductor.org. 

We selected publicly available datasets relevant to the development of the B-cell lineage and 

thus the following ENCODE datasets were employed to filter correlated SNPs that lie within 

putative enhancer regions with Gene Expression Omnibus (GEO) accession IDs: B cells 

CD20+ RO01778 DGF Peaks (GSM1014525), B cells CD20+ RO01778 DNaseI HS Peaks 

(GSM1024765, GSM1024766), B-cells CD20+ RO01794 HS Peaks (GSM1008588), 

CD20+ (RO 01778) H3K4me3 Histone Mod ChIP-seq Peaks (GSM945229), CD20+ 

RO01794 H3K27ac Histone Mods by ChIP-seq Peaks (GSM1003459), CD20+ (RO01794) 

H3K4me3 Histone Mod ChIP-seq Peaks (GSM945198), CD20+ CTCF Histone Mods by 

ChIP-seq Peaks (GSM1003474), CD20+ H2A.Z Histone Mods by ChIP-seq Peaks 

(GSM1003476), CD20+ H3K4me2 Histone Mods by ChIP-seq Peaks (GSM1003471). To 

define other physical map features (transcription start sites, 5′ UTR, 3′UTR) we downloaded 

annotations from the February 2009 release of the human genome (GRCh37/hg19) available 

from the UCSC genome browser55. Finally, we used the highly conserved set of predicted 

targets of microRNA targeting at www.mircode.org (miRcode 11, June 2012 release), and 

conserved high-quality microRNA target species from www.microRNA.org (June 2010 

release).

FunciSNP18 was run with the following settings: a window size of 1Mb around the index 

SNP was used with r2 > 0.5. To determine whether FunciSNP-generated SNPs potentially 

affect the binding of known transcription factors, position-specific weight matrices (PSWM) 

were employed from Wang et al.56. To distinguish between neutral and potentially 

damaging (or activating) variants, both alleles of the SNP were scored by adding up the total 

matrix score of each of 119 transcription factor motifs for each of the possible start sites in a 

window around the SNP and flagging the start positions that surpassed a threshold of 80% of 

the maximum score for each motif. In addition, the scoring was weighted by the difference 

between maximum and minimum score at each position, so that unconserved and non-

critical sites didn’t influence the score. SNPs that were found within binding sites of 80% 

maximum or better were reported along with the score of the alternate allele. A quality score 

derived from the ratio of the difference in scores/1−(maximum allelic binding to the TF at 

that position) was used to rank the SNPs and classify them as neutral, damaging, or 

activating.

TCF3 Expression Experiments

LCLs were generated from blood samples collected from 74 individuals, including 25 

healthy controls and post-therapy 49 cHL patients (from blood samples collected at least one 

year after completion of all therapies) by infection of PBMCs with the EBV strain B95-8. 

Genotyping of the LCLs was carried out using a TaqMan SNP assay. Expression levels were 

assessed using qRT-PCR which was performed on all cell lines using the TCF3 assay and 

isoform specific primer sets. Association between TCF3 gene expression levels and TCF3 

genotype was assessed by linear regression, separately for cHL cases and controls, using 

PLINK50.
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To compare TCF3 expression in EBV-transformed LCLs generated from classical HL cell 

lines and normal tonsillar germinal center B cells, germinal center B cells were sorted from 

three independent tonsils (CD19+CD38+IgD−). HL-derived cell lines, i.e. L428, L540, 

L591, L1236, KM-H2, SUPHD1 (available from Braunschweig, Germany)and DEV (A. van 

den Berg laboratory)57, were cultured in RPMI 1640 medium (Lonza Walkersville, 

Walkersville, MD) supplemented with 5–20% fetal calf serum, 100U/ml penicillin/

streptomycin and ultraglutamine (Lonza Walkersville) in a 5% CO2 atmosphere at 37°C. 

DNA isolation and genotyping (TaqMan SNP assay, C_11969900_10) was carried out using 

standard procedures. RNA was isolated using Trizol (Invitrogen, Carlsbad, USA) and 

DNAse treated (Ambion, Foster City, CA). The RNA concentration was measured with a 

NanodropTM 1000 Spectrophotometer (Thermo Fisher Scientific Inc., Waltham, USA) and 

integrity was evaluated by the Experion system. cDNA was synthesized using 500ng input 

RNA, Superscript II and random primers according to the manufacturers protocol 

(Invitrogen). qRT-PCR was performed on all samples using the TCF3 assay and isoform 

specific primer sets in triplicate. Relative expression levels were calculated using TBP as 

housekeeping gene and data were expressed as the 2-deltaCt values. A T-test was used to 

test for TCF3 expression level differences in classical HL cell lines compared to germinal 

center B cells.

TCF3 Mutation Analysis

In an ongoing whole exome sequencing analysis we noted a missense mutation (p.N551K) 

in the TCF3 gene in one out of seven HL derived cell lines, i.e. SUPHD1. To confirm 

presence of the mutation and expression of the mutant allele we amplified cDNA of the 

SUPHD1 cell line by PCR with AmpliTaq Gold® DNA Polymerase, PE Buffer II and 

MgCl2 (Applied Biosystems) and primers designed for the region of interest (Primer 

Express, Applied Biosystems). Primers were ordered with an M13-tail (underlined), to allow 

direct sequencing of the PCR product (forward 5′-

gtaaaacgacggccagtcggaggaggagaagaaggag-3′ and reversed 5′-

ggaaacagctatgaccatggcttggtctgcgctttgtc-3′). PCR products were run on an agarose gel to 

check efficiency and purified by high pure PCR product purification kit (Roche, Mannheim, 

Germany) and sent for sequencing (LGC Genomics).

HL GWAS genetic variants in eQTLs

From the HL GWAS meta-analysis, we selected a subset of genetic variants that were (cis) 

eQTLs in (B-cells alone or both B-cells and monocytes), based on Fairfax et al.23. Variants 

located within the HLA region (Position 6:25,000,000 to 6:35,000,000) were excluded due 

to the very high degree of LD, leaving 21,608 SNPs. We used a permutation procedure to 

consider the range of λ expected by chance by randomly drawing 1,000 subsets (with 

replacement) of 21,608 SNPs taken from the complete HL meta-analysis 885,168 non-MHC 

genetics variants of the original HL meta-analysis. We then estimated λ within each of 

randomly selected 1,000 subsets of 21,608 SNPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Quality control for subjects and SNPs in the GWAS discovery meta-analysis
Details for each GWAS have been previously published12–14.
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Figure 2. Effect of genetic risk variants on the risk of Hodgkin lymphoma
Combined Odds Ratios (ORs) and 95% Confidence Intervals (CIs) were derived from 

combining the study-specific estimates in a meta-analysis using a fixed-effect model. 

Individual study estimates (OR and 95% CIs) were derived from the unconditional logistic 

regression adjusted for gender and population stratification, assuming additive model of 

inheritance. P-values for homogeneity between different subgroups were calculated using 

Cochran’s Q statistic. Squares represent summary estimates; the size of the square represents 

inverse of the variance of the log ORs; horizontal lines represent 95% CIs; diamonds 

represent results for the total HL; solid vertical lines represent OR= 1. Note that rs9402684 

is substituted for rs7745098 (r2 = 0.90), which was not available in all three contributing 

GWAS.

All HL= All subtypes of Hodgkin lymphoma combined (1816 cases, 7877 controls), NS = 

nodular sclerosis (1233 cases, 7877 controls), MC = mixed cellularity (320 cases, 7877 

controls), NS young = nodular sclerosis diagnosed in young adults15–35 years old (792 

cases, 7877 controls), EBV-negative (776 cases, 6863 controls), EBV-positive (287 cases, 

6863 controls).
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Figure 3. Results of a meta-analysis of three GWAS of Hodgkin lymphoma
(a) Manhattan plot of genome-wide results of a case-control comparison of 1816 Hodgkin 

lymphoma patients and 7877 controls of European origin. P-values were determined for 

each SNP based on the overall meta-analysis using a fixed-effect model. Five loci surpassed 

the genome-wide significance level of P = 5 × 10−8, including 4 previously reported SNPs at 

6p21.3 (HLA class II) and 5q31 (IL13) and one novel SNP (rs1860661 at 19p13.3) located 

in TCF3. Noteworthy loci from previous reports replicated here at < P = 0.05 are also 

shown, including those at 2p16 (REL), 3p24 (EOMES), 6q23 (HBS1L-MYB), 8q24, and 

10p14 (GATA3), in addition to two novel loci at 3q32 (CLSTN2) and 7p21 (ARLA4-ETV1) 

from this meta-analysis that did not replicate. Note that data for rs7745098 at 6q23 was not 

available in all three contributing GWAS, thus data for rs9402684 at r2 = 0.90 was 

substituted. Variants with I2 values ≥ 75% indicative of significant heterogeneity were 

excluded. (b) Regional plot of the 19p13.3 locus. Results (−log10P) are shown for SNPs 

genotyped and imputed within the region. The diamond represents the most significant SNP 

in the locus and the r2 values for the other SNPs are indicated by different colors depending 

on the LD level in the CEU population. The genes within the region are annotated and 
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shown as arrows. (c) Linkage disequilibrium map of the 19p13.3 locus (red represents r2 > 
0.9).
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Figure 4. Forest plot of discovery and replication Odds Ratios and 95% Confidence Intervals for 
the association between 19p13.3 TCF3 rs1860661 and Hodgkin lymphoma by study
Odds Ratios (ORs) and 95% Confidence Intervals (CIs) were derived from the unconditional 

logistic regression adjusted for age, gender and population stratification for GWAS analysis, 

assuming additive model of inheritance. Squares represent ORs; the size of the square 

represents inverse of the variance of the log ORs; horizontal lines represent 95% CIs; 

diamonds represent summary estimate combining the study-specific estimates with a fixed-

effects model; solid vertical lines represent OR= 1; the dashed vertical line represents the 

overall OR. P-values for homogeneity between different subgroups were calculated using 

Cochran’s Q statistic.

Samples sizes are: Combined discovery and replication (3097 cases and 11095 controls); 

Overall discovery (1816 cases and 7877 controls) consisted of European Collaborative 

Study (1241 cases and 5726 controls); USC GWAS (366 cases and 1137 controls); UC 

GWAS (209 cases and 1014 controls); Overall replication (1281 cases and 3218 controls) 

consisted of Mayo Clinic (234 cases and 223 controls); EPILYMPH (64 cases and 141 

controls); French Replication Series (LYSA/CNG Evry France) (366 cases and 1696 

controls); UK Replication Series (ELCCS (York)/Scotland and Newcastle Epidemiological 

Study of Hodgkin’s Disease (499 cases and 520 controls). The Scandinavian SCALE study 

is not included as rs1860661 could not be genotyped in controls using Sequenom.
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Figure 5. Bioinformatic and expression analysis of the TCF3 SNP
a) Browser view of TCF3 genomic region. Position of ENCODE data for the chromatin 

biofeatures used to filter correlated SNPs are shown in the top 5 tracks as black bars. The 

FunciSNP18 analysis track displays correlated SNP positions with the name and r2 value. 

Red arrows highlight the putative functional SNPs for this region. Genomic sequence 

surrounding the affected SNPs is shown at bottom under the motif-logo of the matched 

transcription factor, with the risk allele for Hodgkin’s Lymphoma boxed in red. The 

alternative (protective) allele is displayed next to the SNP name, with allele frequency (AF) 

for Europeans in 1000 genomes19. b) TCF3 expression levels determined on RNA isolated 

from lymphoblastoid cell lines generated by transformation of blood B cells obtained from 

healthy controls (n=25) and post-therapy Hodgkin lymphoma (n=49) patients, using 1RT-

PCR. Linear models were used to assess correlation between genotype and TCF3 expression 

levels.
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